- lokale Konvergenz Konvergenz
- локальная сходимость
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Konvergenz — (zu spätlateinisch convergere ‚sich hinneigen‘, ‚zu einander neigen‘) bezeichnet: Konvergenz (Grafik), in Grafik und Fotografie Konvergenz (Bildschirm), in der Elektrotechnik die korrekte Fokussierung der Elektronenstrahlen Konvergenz (Netzwerk) … Deutsch Wikipedia
Bisektion — Die Bisektion, fortgesetzte Bisektion oder das Intervallhalbierungsverfahren ist ein Verfahren der Mathematik und der Informatik. Durch sie wird eine konvergente Folge von Intervallschachtelungen erzeugt. Das Wort setzt sich zusammen aus Bi… … Deutsch Wikipedia
Bisektionsverfahren — Die Bisektion, fortgesetzte Bisektion oder das Intervallhalbierungsverfahren ist ein Verfahren der Mathematik und der Informatik. Durch sie wird eine konvergente Folge von Intervallschachtelungen erzeugt. Das Wort setzt sich zusammen aus Bi… … Deutsch Wikipedia
Intervallhalbierung — Die Bisektion, fortgesetzte Bisektion oder das Intervallhalbierungsverfahren ist ein Verfahren der Mathematik und der Informatik. Durch sie wird eine konvergente Folge von Intervallschachtelungen erzeugt. Das Wort setzt sich zusammen aus Bi… … Deutsch Wikipedia
Intervallhalbierungsmethode — Die Bisektion, fortgesetzte Bisektion oder das Intervallhalbierungsverfahren ist ein Verfahren der Mathematik und der Informatik. Durch sie wird eine konvergente Folge von Intervallschachtelungen erzeugt. Das Wort setzt sich zusammen aus Bi… … Deutsch Wikipedia
Intervallhalbierungsverfahren — Die Bisektion, fortgesetzte Bisektion oder das Intervallhalbierungsverfahren ist ein Verfahren der Mathematik und der Informatik. Durch sie wird eine konvergente Folge von Intervallschachtelungen erzeugt. Das Wort setzt sich zusammen aus Bi… … Deutsch Wikipedia
Durand-Kerner-Methode — Das Weierstraß (Durand Kerner) Verfahren (W (D K) Verfahren) ist ein iteratives Verfahren zur simultanen Bestimmung aller Nullstellen eines univariaten Polynoms. Es ist benannt nach Karl Weierstraß, der es als Teil eines Beweises zum… … Deutsch Wikipedia
Durand-Kerner-Verfahren — Das Weierstraß (Durand Kerner) Verfahren (W (D K) Verfahren) ist ein iteratives Verfahren zur simultanen Bestimmung aller Nullstellen eines univariaten Polynoms. Es ist benannt nach Karl Weierstraß, der es als Teil eines Beweises zum… … Deutsch Wikipedia
Weierstraß-(Durand-Kerner)-Verfahren — Das Weierstraß (Durand Kerner) Verfahren (W (D K) Verfahren) ist ein iteratives Verfahren zur simultanen Bestimmung aller Nullstellen eines univariaten Polynoms. Es ist benannt nach Karl Weierstraß, der es als Teil eines Beweises zum… … Deutsch Wikipedia
Weierstraß-Iteration für Polynomnullstellen — Das Weierstraß (Durand Kerner) Verfahren (W (D K) Verfahren) ist ein iteratives Verfahren zur simultanen Bestimmung aller Nullstellen eines univariaten Polynoms. Es ist benannt nach Karl Weierstraß, der es als Teil eines Beweises zum… … Deutsch Wikipedia
Newton-Verfahren — Das Newton Verfahren, auch Newton Raphson Verfahren, (benannt nach Sir Isaac Newton 1669 und Joseph Raphson 1690) ist in der Mathematik ein Standardverfahren zur numerischen Lösung von nichtlinearen Gleichungen und Gleichungssystemen. Im Falle… … Deutsch Wikipedia